INTRODUCTION

A large number of PCI procedures including PCI are performed annually worldwide. It also includes primary PCI procedures.¹ After PCI in 10-25% of patients cardiac biochemical markers are elevated but its significance as periprocedural MI is not known.² Increased risk of mortality with elevated levels of CK-MB after PCI is documented in different studies.³ This adverse relation was also demonstrated in EPIC trial.⁴ Procedural complication including side branch compromization, flow-limiting dissection, or distal embolization results in worse cardiac outcomes and associated myocardial necrosis may serve as nidus for arrhythmogenesis.⁵ Different studies correlated elevated cardiac biochemical markers with mortality.²,⁶,⁷

Worse clinical outcome is expected if CK-MB level is elevated 5 times greater than normal valve which is associated with complication of PCI.⁸ Greater the elevation of cardiac biochemical markers after PCI is associated with greater risk for late cardiovascular mortality.⁹
In Pakistan impact of cardiac enzyme elevation on clinical outcome after PCI has never been studied before, this study is designed to compare the clinical outcome of patients after PCI having normal versus raised cardiac enzymes. This will further risk stratify the patients for aggressive management of the patients having increased levels of cardiac enzymes.

OBJECTIVE
To correlate the clinical outcome after PCI with cardiac biochemical markers.

OPERATIONAL DEFINITIONS

Normal cardiac enzymes
If the cardiac enzymes creatine kinase-MB (CK-MB) isoenzyme levels were below the upper reference limit analyzed by mass CK-MB levels using a dimension RxL/HM analyser (Dade Behring, Glasgow, DE, USA). The upper reference limit for CK-MB will be 5.0 ng/mL.

Raised cardiac enzymes
Elevated CK-MB isoenzyme levels were above the upper reference limit in at least one of the two post-procedural samples six hours apart.

Clinical outcome
Clinical outcome was assessed on follow-up in all patients at 30 days. All clinical end points were entered on proforma on follow-up visits. Patients’ clinical condition regarding symptoms of chest pain, shortness of breath was inquired on follow-up. Clinical outcome was divided into primary and secondary endpoints.

1. **Primary end point**
The primary end point of the study was in-hospital or 30 days mortality.

2. **Secondary clinical end points**
Includes major adverse cardiac events (MACE) including myocardial infarction, emergent coronary artery bypass surgery, or repeat target lesion revascularization (TLR) at 30 days after the index procedure.

MATERIALS AND METHODS

Setting
Department of Cardiac Catheterization & Interventional Cardiology and coronary care unit of Faisalabad Institute of Cardiology, Faisalabad.

Duration of Study with Dates
Six months (February, 2014 to August, 2014)

Sample Size
Two hundred consecutive patients undergoing PCI were divided in to two groups:

- **Group I:** 150 patients having normal cardiac enzymes
- **Group II:** 50 patients having raised cardiac enzymes

Sampling Technique
Non probability purposive sampling

Study Design
It was an observational analytical study.

Inclusion Criteria
- Patients with ischemic heart disease undergoing percutaneous coronary intervention.
- Patients of either gender of age range 25-70 years.

Exclusion Criteria
- Myocardial infarction within the previous 24 hours.
- Left ventricular systolic dysfunction (EF < 25%).
- Patients with CK-MB level > 1 times the upper limit of normal in 24h before PCI.

Data Collection Procedures
Patients were included after taking informed consent. Data was collected including baseline characters of study group, risk factors, and angiographic finding prior to PCI. Procedure variable like size and balloon type and size of stent and any complication like dissection, perforation, side branch compromise, and CK-MB levels post procedure was noted. A blood sample was drawn <24 h after the procedure and CK-MB level was measured. The patients were clinical evaluated after 30 days.
Clinical outcome was measured by noting in-hospital mortality and 30 days mortality. Symptoms of chest pain and exertional dyspnea were noted on follow-up and repeat target vessel revascularization or emergent bypass graft surgery were noted.

Statistical Analysis

Statistical analysis was performed using the SPSS (version 10). Mean ± standard deviation (SD) for quantitative variables were calculated. Frequencies and percentages of qualitative variables were calculated. Clinical outcome variable like mortality, Non-ST elevation MI or repeat target lesion revascularization were compared between Group I (Normal cardiac enzymes) vs Group II (raised cardiac enzymes) by Chi Square test. Associations with outcomes will be considered statistically significant if p values are less or equal to (P≤0.05)

RESULTS

After fulfilling inclusion criteria 200 consecutive patients were studied at Faisalabad Institute of Cardiology Lahore. 123 (82%) males and 27 (18%) females included in group I (mean age 53.9 ± 9.86 years) while in group II (mean age 56.68 ± 12.62 years), there were 27 (84%) males and 8 (16%) females. (Table-I). Smoking was most frequently observed in 57.3% and 60% in group I and II respectively. Among 371 significant angiographic lesions 159 were confined to left anterior descending, 113 right coronary, 92 left circumflex and 7 ramus intermedius arteries. Patients with moderate dysfunction (20%) and severe left ventricular (2%) were more common in group II than in group I (8.7%) and (0.6%) respectively (Table-II). Multi vessel coronary artery disease (58%) was more in group II than group I (34%) [Table-II]. Total 260 percutaneous coronary interventions were performed among which multiple PCI 54.3% in group II and 34.2% in group I (Tables-II). Bare metal stent and drug eluting stents were used. 51.9% were bare metal stent, 40.8% drug eluting stent while 7.3% lesions were only ballooned.

34% patients had complications in group II while 2.1% in group I. In group II, major side branch was compromised in 14% of patients, PCI was complicated by dissection in 6% patients, slow flow observed in 10%, no reflow in 2% and sub-acute stent thrombosis observed in 4% of patients. In group I, 2.1% patients developed complications among which no flow (1.4%) and subacute stent thrombosis (0.7%) (Table-III).

<table>
<thead>
<tr>
<th></th>
<th>Group I (%)</th>
<th>Group II (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[n = 150]</td>
<td>[n = 50]</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>123 (82%)</td>
<td>42 (84%)</td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>27 (18%)</td>
<td>8 (16%)</td>
<td></td>
</tr>
<tr>
<td>Age (Years)</td>
<td></td>
<td></td>
<td><0.05</td>
</tr>
<tr>
<td>30 – 40</td>
<td>12 (8%)</td>
<td>5 (10%)</td>
<td></td>
</tr>
<tr>
<td>41 – 50</td>
<td>52 (34.6%)</td>
<td>12 (24%)</td>
<td></td>
</tr>
<tr>
<td>51 – 60</td>
<td>62 (41.3%)</td>
<td>15 (30%)</td>
<td></td>
</tr>
<tr>
<td>61 – 70</td>
<td>24 (16%)</td>
<td>18 (36%)</td>
<td></td>
</tr>
<tr>
<td>Risk factors of ischemic heart disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking</td>
<td>86 (57.3%)</td>
<td>30 (60%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>35 (23.5%)</td>
<td>20 (40%)</td>
<td><0.05</td>
</tr>
<tr>
<td>Hypertension</td>
<td>83 (55.5%)</td>
<td>28 (56%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Previous history of ischemic heart disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family history of ischemic heart disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33 (22%)</td>
<td>25 (50%)</td>
<td><0.05</td>
<td></td>
</tr>
<tr>
<td>45 (30%)</td>
<td>20 (40%)</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>62 (41.3%)</td>
<td>26 (52%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Obesity</td>
<td>29 (19.3%)</td>
<td>10 (20%)</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Table-I. Basic characteristic of (n = 200)
Complication	Group I (%)	Group II (%)	P value
Dissection | - | 3 (6%) | 0.11
Side branch compromise | - | 7 (14%) | 0.05

Any other | | | |
Slow flow | 2 (1.4%) | 5 (10%) | 0.3
No flow | - | 1 (2%) | 0.05
Subacute stent thrombosis | 1 (0.7%) | 2 (4%) | 0.6

Table-III. Frequency of complications (n = 200)

In group II, one patient (2%) died during hospital stay after PCI, 32% patients developed symptoms of angina within 30 days follow up and were treated accordingly. Non-ST segment elevation myocardial infarction observed in 12% patients. Six percent of patients needed repeat target vessel revascularization (Table-IV). In group I, there was no hospital mortality. Only 2 (1.4%) developed symptoms of angina within 30 day follow up. One patient 0.7% underwent repeat target vessel revascularization while other one treated conservatively (Table-IV).

Outcome	Group I (%)	Group II (%)	P value
In hospital mortality | - | 1 (2%) | 0.05
30 days follow-up | | | |
Symptomatic patient | 2 (1.4%) | 16 (32%) | 0.3
NSTEMI | - | 6 (12%) | 0.05
Repeat TLR | 1 (0.7%) | 3 (6%) | 0.4

Table-IV. Frequency of outcome (n = 200)

DISCUSSION
Cardiac enzymes elevation caused by complications of PCI is obviously undesirable. Roe at al analyzed 6164 patients of ACS from four randomized trials namely GUSTO-II b, PURSUIT, PARAGONE-A and PARAGONE-B. This study showed worse clinical outcome of patients with raised cardiac enzymes in terms of mortality. Patients with significantly raised CK-MB were comparable regarding age with our study that is 59 years with 57 years. Male population is more 84% in my study as compared to 70.1%. Hypertension and dyslipidemia are comparable 58% and 50.4% with 56% and 52% respectively in this study. Diabetes (40%) and smoking (60%) is more frequent in my study. In-hospital mortality was same 2.4% while it was 2% in our study. Repeat target lesion revascularization was 12.9% while it was 6% in my study however patients were followed up for additional six months.

Abdelmeguid et al studied 4664 patients of ACS who underwent PCI. It was observed that even mild elevation of CK-MB (>2 times ULN) associated with worse clinical outcome in terms of mortality, repeat revascularization. Periprocedural complications like dissection 7.7% and side branch compromise 12.5% reported by Abdelmeguid et al are nearly the same in our study, 6% and 14% respectively. Abdelmeguid et al so reported that mortality was 2-3%, target...
lesion revascularization was 6-10% and major ischemic events 12%. The results of our study are mortality was 2%, target lesion revascularization 6% and non-ST segment elevation MI 12%.

Atherosclerotic disease burden like multi-vessel disease increases the risk of complications during PCI resulting elevation of cardiac biochemical marker which is always associated with worse outcome. So cardiac enzyme elevations after PCI identifies high-risk patients without an obvious MI.12,13 It is suggested that after PCI any degree of CK-MB elevation is associated with adverse prognosis.8,14,15,16

Study Limitations
1. Small cohort of patients.
2. Clinical follow was of short duration.
3. Cardiac enzyme elevation was not categorized into sub groups.

CONCLUSION
After PCI elevated level of cardiac biochemical marker leads to adverse clinical outcome and thus helps in identification of high risk group after PCI.

Copyright © 15 Oct, 2016.

REFERENCES
15. Alpert JS, Thygesen K, Antman E, Bassand JP. Myocardial infarction redefined – a consensus document of the Joint European Society of Cardiology/

“*You are never too old to set another goal or dream another dream.*”

Les Brown

<table>
<thead>
<tr>
<th>Sr. #</th>
<th>Author-s Full Name</th>
<th>Contribution to the paper</th>
<th>Author=s Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dr. Naeem Asghar</td>
<td>Manuscript, Drafting</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Dr. Muhammad Nazim</td>
<td>Literature review + Final Proof Reading</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Dr. Shakeel Ahmad</td>
<td>Data Collection</td>
<td></td>
</tr>
</tbody>
</table>