INTRODUCTION

Musculoskeletal injuries, including fractures and dislocations, are a foundation of the specialty of orthopedic surgery. The goal of any fracture treatment is to restore the function of the injured limb early and completely, but all circumstances may not precisely fit into a reduction nor absolute stable fixation. Fractures of the humeral shaft are commonly accounting for approximately 3% of all fractures. Simple humeral shaft fractures can be treated non-operatively with good results in most cases. Non-operative treatment requires a long period of immobilization, which carries a risk of prolonged shoulder joint stiffness. Furthermore, non-union after conservative treatment of these fractures does occur up to 10% of the cases and treatment of this condition can be very difficult. There is growing interest in treating even simple humeral shaft fractures by dynamic methods.
compression plate (DCP) fixation or intramedullary (IM) nailing in order to avoid these problems and to allow earlier mobilization and rapid return to work. Compression plates and interlocking intramedullary nails are the two most popular devices for achieving fracture stabilization. Close intramedullary nailing of fractures of the humeral shaft is used in the treatment of multiple trauma patients, fractures with overlying burns, patients with osteopenic bones, pathological fractures and segmental fractures. In transverse or short oblique fracture, AO compression plates can be used. Open reduction and internal fixation usually ensures high likelihood of anatomic reduction and union. However its disadvantages include the need for extensive dissection risk of infection, injury to radial nerve the possible mechanical failure in osteoporotic bone and possible need for plate removal at a later date. Intramedullary nailing requires less soft tissue disruption and preserve the fracture haematoma. However the use of intramedullary nail has been associated with post operative shoulder pain and stiffness due to impingement from prominent implants. Dabezies et al achieved a 97% union rate using a modern plate and screw fixation technique. Seidel reported 100% union in series of 80 of fractures treated with locked humeral nails inserted by closed techniques. Chapman concluded that plates and nails both provide predictable stabilization and ultimately healing of the fracture. A randomized controlled study carried out at King George Medical University Lucknow proved that intramedullary nail can be considered a better surgical option for the management of diaphyseal fracture of the humerus as it offers a short union time and lower incidence of serious complications like infection. However, there appears to be no difference between the two groups in terms of the rate of union and functional outcome. Bhandari M et al states that plate fixation also reduced the risk of shoulder problems in comparison to intramedullary nails. Plate fixation of humeral shaft fractures may reduce the risk of re-operation and shoulder impingement.

**MATERIAL & METHODS**

This study was carried out in Orthopaedics Unit-I, Liaquat University Hospital Hyderabad / Jamshoro, from March 2007 to Feb 2009. Study consisted of 40 patients admitted through the outpatient department, as well as from casualty department of orthopaedic Unit-II Liaquat University Hospital Hyderabad / Jmashoro. All data was entered in a specified proforma designed for this purpose. Patients were divided in two groups. Group A for dynamic compression plates and group B for intramedullary nails. Detailed Clinical examination of the patient was done and recorded in proforma. Systemic review was also done to see any major or minor head injury. All patients underwent for base line investigation.

**Inclusion Criteria**

Patients with type A1-2, A2-2 and A3-2 closed diaphyseal humeral fracture, bilateral fractures, associated with minor head injuries, age between 20-40 years and fracture not more than two weeks old.

**Exclusion Criteria**

Open fracture, associated with severe chest or abdominal injuries, pathological fractures and malunited fractures with neurological deficit. Follow up of all these patients was done. 1st four visit after every week, then alternet week upto 3rd month then monthly upto 6 month to assess any complication. Results were prepared with help of tables and graphs. Data was analyzed through SPSS software version 16.0.

**RESULTS**

The 40 cases of closed diaphyseal humeral shaft fracture were operated. Group A for dynamic compression plates (DCP) while group B for intramedullary nails (IMN), each group comprising of 20 patients. In dynamic compression plates (DCP) group 17 (85 %) were male and 3 (15%) female. Ratio male: female ratio of 5.6:1 while in intramedullary nails group 12 (60 %) were male and 8 (40%) female. Ratio male: female ratio of 1.5:1.
(IMN) group 18(90%) were male and 2(10%) female with male: female ratio of 9:1. There was wide variation of age ranging from a minimum of 20 year to 40 year in both group. The mean age was 29.78+3.5 years. The most common cause of fracture shaft of humerus was road traffic accident (RTA). There were 23(57.5%) patients who sustained fractures of the humerus following road traffic accidents. Eight (20%) cases had fractures shaft of humerus after fall from height and 9 (22.5%) cases had fractures shaft after assault (Fig 1).

The Fracture pattern was Oblique in 22(55%) cases, Transverse in 12 (30%) and Spiral in 6(15%). Severity of post operative pain in both groups was recorded. Mild pain was felt in 10(50%) patients of DCP group and 6 (30%) patients of IMN group, Moderate pain was seen in 7(35%) patients of DCP group and 10 (50%) patients of IMN group, severe pain was described by 3(15%) patients in DCP group and 4 (20%) patients in IMN group (Fig No.2).

The complications seen in this study were Infection (1(5%) patients in DCP VS 0(0%) patients in IMN group), Iatrogenic palsy of radial nerve (1(5%) patients in DCP VS 0 (0%) patients in IMN group), Non union (1(5%) patients in DCP VS 1 (5%) patients in IMN group), Severe impingement (0(0%) patients in DCP VS 3 (15%) patients in IMN group), Adhesive capsulitis (0(0%) patients in DCP VS 2 (10%) patients in IMN group). However minimal loss of fixation in 1 (5%) cases and late fracture occurred in one case 5% (Fig No.3).

The duration of hospital stay varied from 1 to 20 days.
It was longer about -10-20 days in 12(60%) of DCP patients as compared to IMN cases where majority 11(55%) were discharged within 1 to 10 days. The mean hospital stay in DCP group was 15 days and IMN group was 13.5 days.

DISCUSSION
Diaphyseal fractures of the humerus are definitely not subjects for “golden standard therapies”. Although there exists a huge amount of creativity in developing new techniques and implants for the fixation of these fractures, The variety of fracture patterns and situations make clinical studies difficult to be compared with and very often the decision of treatment is led mainly by personal experience, which is connected with very subjective bias.

On one side we find general reservations towards operative treatment of these fractures. On the other side, when accepting an indication for internal fixation, some authors prefer plating as a general procedure for humeral fractures, others vote for nailing. Analyzing literature each opinion finds support, which shows that there is no definitive answer. Chapman et al compared the clinical and radiographic results for locked intramedullary nails and plates used in the treatment of humeral diaphyseal fractures. They stated from their results that for patients requiring surgical treatment of a humeral shaft fracture, intramedullary nailing and compression plating both provide predictable methods for achieving fracture stabilization and ultimate healing.

Discussion concerning surgical treatment of humeral shaft fractures and Various methods have been introduced for the management of humeral shaft fracture with good results. This study was carried out to compare the functional out come between dynamic plates and intramedullary nails. The male to female ratio seen in DCP group was 5.6:1 as compared to IMN group where it was 9:1. The higher rate of fracture in male clearly correlated with the life style of male, especially, in our part of world. The males are more involved in outdoor activities and the young male are more enthusiastic about life and careless drivers. Female usually have sedentary life style and less involved in driving which is a common cause. However the male to female ratio given by Mirdad TM is 9.8:1, Reyes-Saravia GA is 3.4:1 and Akram R is 1.3:1. The age ranged from 21 to 40 years in both groups with mean age of 29.78 years. The fractures were most common in the 3rd and 4th decades in our study. The other series also show higher incidence of fractures in younger age groups. However Tsai CH showed age range from 9 to 82 year with the mean age for females was 50.8 years and for males 31.7 years and Gadegone WG showed mean age was 37 years.

The present study showed the most common mechanism of humeral shaft fractures as road traffic accidents with 23(57.5 %) patients followed by assault 9(22.5%) and fall from height included 8(20%). In the study of Memon FA, thirty seven (63.7%) patients sustained their fractures and soft tissue injuries as a result of road traffic accident and 21 (36.2%) sustained the same problem as result of domestic fall. In the study conducted by Putti AB, out of 34 patients the cause of the injuries leading to admission was RTA in 28 ( 82.3%). In the study carried out by SitatiFC and Kingori J, Out of 42 fractures shaft of humerus, 31(73.8%) were secondary to RTA while the remaining were due to fall from height 4(9.5%) and assault 2(4.7%) cases. The findings of present study matches these studies. The road traffic accident is the most common cause of fracture shaft of humerus.

Due to limited sources of income, motorbile is the main conveyance of middle class in its accidents, humerus is commonly affected.

The clinical parameters were further supported by x-ray which revealed Oblique fracture in 22(55%) cases, Transverse fracture in 12(30%) and Spiral fracture in 6(15%). In our study postoperative was feel more pain in IMN as compare to DCP group. In this study
moderate to severe pain (IMN = 35% VS DCP = 25%) and mild to moderate pain was (IMN = 40% VS DCP = 42.5%). In our study majority of postoperative complications were found higher in IMN group as compared to DCP group. Infection is virtually confined to open fractures in which the wound is contaminated by organisms carried in from outside the body. Exceptionally, a closed fracture may become infected when it is converted into open fracture by operative intervention. Wound infection occasionally remains superficial and the bone escapes but more often the infection extends to the bone and gives rise to osteomyelitis.

In the present study we had 1 (DCP = 5% VS IMN = 0%) case of infection. Staph.Aureus was isolated on culture which was sensitive to 1st generation cephalosporins, amoxyllin and clavulonic acid and fucidic acid. Although treatment was started but the wound needed several thorough debridements before the infection settled. However frequency of wound infection given by Bell et al. in a series of 33 patients treated with dynamic compression plate, there was 1 (3%) case of infection.

There was one case of radial nerve injury (DCP = 5% VS IMN = 0%). The radial nerve injury was associated with oblique in the middle third of humerus. When it was opened for plating the radial nerve was lacerated between two boney fragments. In the respective IMN and DCP groups rate shave been reported of iatrogenic radial nerve palsy were 2.6 to 14.3% and 2 to 5%. Reported rates of iatrogenic comminution during nail insertion were 7.7% to 10%, and the re-operation rate was higher in patients undergoing IMN fixation. In our study, both groups were comparable in terms of functional outcomes and rates of union. The complication rate was higher in the IMN group (mostly pertaining to shoulder pain).

In our study non-union was seen in one (5%) case in each groups, which were managed by freshening of the bone ends and with bone grafting. The incidence of non-union reported in the literature is between 0–8%.

In our study restriction of shoulder abduction due to impingement of the nail was noted in 3 (15%) cases, which were later managed by removal of the nail; implant failure was noted in one case due to breakage of the nail at the site of the distal locking screw; this was managed by DCP and bone grafting. It has been reported that antegrade nailing affects fracture healing by distracting the fracture and soft tissues.

In our study adhesive capsulitis occurred in 2 (10%) cases of IMN group. Seidel’s interlocking nailing has yielded good results, but the shoulder function was not assessed. Persistent shoulder pain is common. The cause of pain could be disruption of the rotator cuff in its avascular zone (within 1 cm of its insertion to the greater tuberosity), leading to poor healing. Antegrade insertion may cause adhesive capsulitis and shoulder pain, but does not affect long-term function.

Longer the duration of hospital stay, greater the burden on the patient financially and psychologically. Ideal treatment should therefore minimize the duration of hospital stay. The hospital stay in this study ranged from 1 to 20 days in both groups with mean length of hospitalization as 12.46 days in DCP and 10.3 days in IMN group. It is comparable to other studies given by different authors like 5 days in IMN and 7.5 days (range, 5–14 days).

CONCLUSIONS
Dynamic compression plate is a safe and effective
procedure for treatment of humeral shaft fractures. With low threshold of complications it has significant advantages over intramedullary nails procedure revealed with earlier mobilization, minimum hospitalization and fast recovery towards normal life.

Copyright © 13 Jul, 2013.

REFERENCES


22. O’Donnell TMP, McKenna JV, Kenny P, Keogh P, O’Flanagan SJ. Concomitant injuries to the ipsilateral


AUTHOR(S):
1. DR. IMRAN KHAN
   M.S (Orthopaedics)
   Consultant Orthopaedics
   Department of Orthopaedics Unit-I
   Liaquat University of Medical & Health Sciences Jamshoro

2. PROF. DR. MUHAMMAD AYUB LAGHARI
   Consultant Orthopaedics
   Department of Orthopaedics Unit-I
   Liaquat University of Medical & Health Sciences Jamshoro

3. DR. SHAKEEL AHMED MEMON
   M.S (Orthopaedics)
   Consultant Orthopaedics
   Department of Orthopaedics Unit-I
   Liaquat University of Medical & Health Sciences Jamshoro

4. Dr. Muhammad Khan Pahore
   Assistant Professor
   Department of Orthopaedics Unit-I
   Liaquat University of Medical & Health Sciences Jamshoro

Correspondence Address:
Dr. Imran Khan
M.S (Orthopaedics)
Consultant Orthopaedics
House No. A/53, 3rd Street Faraz Villas
Phase III, Wadhu Wad Road,
Qasimabad, Hyderabad.
drikmaher@hotmail.com

Article received on: 13/03/2013
Accepted for Publication: 13/07/2013
Received after proof reading: 03/12/2013