INTRODUCTION

Road vehicular trauma is the chief reason of blunt abdominal trauma in the civilian population. Auto-to-auto and auto-to-pedestrian collisions have been cited as causes in 50-75% of cases. Other common etiologies include falls and industrial or recreational accidents. The care of the trauma patient is demanding and requires speed and efficiency. Evaluating patients who have sustained blunt abdominal trauma remains one of the most challenging and resource-intensive aspects of acute trauma care. The most important initial concern in the evaluation of a patient with blunt abdominal trauma is an assessment of hemodynamic stability. In the hemodynamically unstable patient, a rapid evaluation must be made regarding the presence of hemoperitoneum or free fluid.

Clarke and colleagues’ review of the Pennsylvania Trauma Systems Foundation trauma registry identified 243 hypotensive patients with intra-
abdominal injury who were initially evaluated in a trauma center. The probability of death increased as time spent in the ED increased up to 90 minutes. Hemodynamically stable patients allow for a more time-intensive evaluation and alternative testing to diagnose intra-abdominal injury. While physical exam in the stable, alert, non-intoxicated patient was reasonably accurate, it is not infallible and clinical observation with serial examinations is warranted. Modalities for the evaluation of Blunt Abdominal Trauma (BAT) patient include diagnostic peritoneal lavage (DPL) and computed tomography (CT) of the abdomen. DPL is insensitive to abdominal injuries that do not produce intraperitoneal hemorrhage. As a result, it cannot help detect some injuries of the retroperitoneum, pancreas and contained injuries to solid intraperitoneal organs. A number of studies advocate that US should replace DPL for the reasons: it is less costly, noninvasive, easily repeated, and is a bedside examination. Using bedside ultrasonography to evaluate trauma patients.

In comparison to US, the disadvantages of CT include higher costs, use of iodinated contrast medium that places the patient at risk of aspiration, and radiation exposure. Another disadvantage of CT is that the patient needs transport, which may be an added risk for the severely injured patient in unstable condition.

Since the 1980’s the Focused Assessment with Sonography for Trauma (FAST) exam has been one of the most widely used applications in emergency bedside ultrasound, and has become a standard part of the initial assessment and resuscitation of the trauma patient. The FAST exam is a tool to evaluate the trauma patient for peritoneal hemorrhage. By utilizing four simple sonographic ‘windows’, the clinician can assess for peritoneal bleeding at the bedside in less than 5 minutes.

In the recent metaanalysis by Stengel et al, a review of 30 clinical trials and over 9000 patients, found an overall sensitivity of 79% and specificity of 99%, leading the authors to conclude that a negative exam does not obviate the need for further imaging such as CT scan.

Thus, the investigators concluded that FAST in the hypotensive patient is an effective screening tool and, when coupled with risk assessment, can effectively rule out intra-abdominal injury requiring surgical intervention.

Therefore we sought to justify FAST is an emergency tool as bridge to decision in an unstable patients with Blunt Abdominal Trauma (BAT) for early intervention in decreasing morbidity and mortality. This may be the only diagnostic modality in unstable patients where CT is not available or not feasible for the patient.

MATERIALS AND METHODS
All cases of trauma admitted through ER at the King Fahad Hospital Madina Munawara, over a period between 2010 and 2011 and who received a FAST ultrasound examination in the Emergency Department for blunt abdominal trauma were included. The King Fahad Hospital Madina Munawara Level II, or Regional Resource Trauma Center. All patients were brought to a trauma resuscitation area where a trauma team conducted a primary survey, after an airway and adequate oxygenation/ventilation were established. The FAST examinations were performed using 4 windows: subxiphoid, right upper quadrant, left upper quadrant, and suprapubic. The critical areas for intra-abdominal bleeding were the hepatorenal space (Morrison’s pouch), the spleno-renal space, and the pelvic pouch of Douglas. The Ultrasound Apparatus kept in the trauma resuscitation area. General surgery residents performed the FAST with on call sonologist. The FAST ultrasound examinations were classified as positive (clearly showing fluid on at least one view), equivocal (no critical views seen), or negative (good visualization in at least three windows, no fluid seen). No quantitative scoring system was used for the amount of fluid detected. The primary aim of the FAST examination was to detect intra-abdominal blood. There was no attempt to determine visceral organ injury. The FAST examinations were interpreted on
the spot and results recorded. CT scans of the head, chest, abdomen, and pelvis were performed when indicated, usually if the clinical examination was equivocal or unreliable, and if the patient remained hemodynamically stable. Patients were grouped into FAST-positive, FAST-equivocal, and FAST-negative. As a separate group unstable patients, defined as admitted to the ED hypotensive (systolic blood pressure 90 mm Hg), were analyzed. Need for emergency operation was recorded, and operative findings were noted.

RESULTS
Total 765 patients from 2010 to 2011 (one year period), were admitted to the trauma service. Total 73 out of 765 patients who underwent FAST ultrasound in the Emergency Room. 40 (54.79%) cases were road traffic accident (RTA) injuries followed by injury due to fall were in 33 (45.20%) cases Fig-1.

Findings: Fast ultrasound observed 49 out of 73 patients (67.12%) were considered positive FAST who had fluid (blood) in the peritoneal cavity and these patients shift to Operative Room for surgery. While 24 (32.87%) patients with no evidence of intra-peritoneal fluid were considered negative for FAST and these patient underwent CT scans for evidence of solid organ injury (Fig-2). 5 out of 24 cases of solid visceral trauma found on CT scan abdomen, but had not been detected by FAST then shift to operative room after resuscitation.

DISCUSSION
Even for experienced surgeons it is difficult and a challenge for diagnosis of blunt abdominal trauma. Most of time, clinical findings are usually not reliable in blunt abdominal trauma. In Europe since the 1970s, Abdominal ultrasound (US) has been used to evaluate trauma patients.

Fast ultrasound findings that help to take quick critical decisions like the need for surgery or conservative treatment are compulsory in blunt abdominal trauma patients. In our study findings were fast ultrasound observed 49 out of 73 patients (67.12%) were considered positive FAST who had fluid (blood) in the peritoneal cavity and these patients shift to Operative Room for surgery. According to these findings we save the time and quickly shifted the patients to Operative Room for surgery and to prevent further morbidity or mortality.

Historically, the presence of a intraperitoneal fluid due to abdominal injuries is significant and ensures immediate laparotomy. During the last decade, however, the practice of non-operative abdominal injuries in adults and children has increased.

The presence of free intra-peritoneal fluid in blunt abdominal trauma injury and absence of
detectable clinical solid organ damage creates a dilemma. There is a 25% chance of missing bowel injuries. While FAST ultrasound findings when negative and in haemodynamically stable patients advised CT scan in blunt abdominal trauma associated equivocal findings on physical examination, neurological injury or impaired sensorium due to drugs or alcohol, multiple extra-abdominal injuries, and suspected the injury of duodenal or pancreatic organ. CT scan is contraindicated in a blunt abdominal trauma patient with clear indication of laparotomy and in haemodyna-mically unstable patient.

While In our study 24(32.87%) patients with no evidence of intraperitoneal fluid were considered negative for FAST and these patient underwent CT scans for evidence of solid organ injury. 5 out of 24 cases of solid visceral trauma found on CT scan abdomen, but had not been detected by FAST then shifted to operative room after resuscitation.

Experience of the hand is a most important factor that affects the findings. It was proven that the results of FAST are not different in the hands of surgeons, radiologists or emergency physicians if they were trained properly. This is essential to ensure the quality of health care given to patients. Fast Ultrasound save the time and give mostly accurate findings and make the decision to emergency shifting of patient to operative room or admit for conservative treatment.

CONCLUSIONS
FAST ultrasound is very helpful to assessment of blunt abdominal trauma and to detect intraabdominal fluid. Fast ultrasound can help in the quick decision for surgical intervention within minutes of a patient's arrival at emergency department.

Copyright © 16 Nov, 2013.

REFERENCES
2. Pathan A. Role of ultrasound in the evaluation of
3. Isenhour JL, Marx J. Advances in Abdominal Trauma. Department of Emergency Medicine, Carolinas Medical Center, 1000 Blythe Boulevard, Charlotte, NC 28203, USA.
13. Peitzman AB, Makaroun MS, Slasky BS, Ritter P. Prospective study of computed tomography in


---

“Only those who dare to fail greatly can ever achieve greatly.”

Robert F. Kennedy